Інтереси

наука

Британский математик решил «задачу тысячелетия»

45479

Знаменитый британский математик Майкл Атья, профессор Оксфордского, Кембриджского и Эдинбургского институтов и лауреат почти десятка престижных премий в области математики, представил доказательство гипотезы Римана, одной из «задач тысячелетия». Доказательство занимает всего 15 строк, а вместе с введением и списком литературы — пять страниц. Текст Атья выложил на сервисе Google Drive.

Гипотеза о распределении нулей дзета-функции Римана была сформулирована математиком Бернхардом Риманом в 1859 году.

Она описывает, как расположены на числовой прямой простые числа.

В то время как не найдено какой-либо закономерности, описывающей распределение простых чисел среди натуральных, Риман обнаружил, что количество простых чисел, не превосходящих x, — функция распределения простых чисел, обозначаемая π(x) — выражается через распределение так называемых «нетривиальных нулей» дзета-функции.

Гипотеза Римана утверждает, что все нетривиальные нули дзета-функции лежат на вертикальной линии Re=0,5 комплексной плоскости. Гипотеза Римана важна не только для чистой математики — дзета-функция постоянно всплывает в практических задачах, связанных с простыми числами, например, в криптографии.

По словам Атьи, решение он нашел, экспериментируя с постоянной тонкой структуры — фундаментальной физической постоянной, характеризующей силу электромагнитного взаимодействия. Она определяет размер очень малого изменения величины (расщепления) энергетических уровней атома и, следовательно, образования тонкой структуры — набора узких и близких частот в его спектральных линиях.

Гипотеза Римана входит в список семи «задач тысячелетия», за решение каждой из которых Математический институт Клэя в США обязывается выплатить награду в один миллион долларов США.

Если доказательство будет подтверждено, Атья получит награду.

На сегодняшний день найдено решение только одной задачи тысячелетия — гипотезы Пуанкаре. Она заключается в том, что всякое односвязное компактное трехмерное многообразие без края гомеоморфно трехмерной сфере. Доказать гипотезу смог российский математик Григорий Перельман. От вознаграждения он отказался.

Завантаження...
Комментарии (0)
Для того, чтобы оставить комментарий, Вы должны авторизоваться.
Гость
реклама
реклама